299 research outputs found

    Simulation of the Effect of Corrugated Structures on the Longitudinal Beam Dynamics at KARA

    Get PDF
    Two parallel corrugated plates will be installed at the KIT storage ring KARA (KArlsruhe Research Accelerator). This impedance manipulation structure will be used to study and eventually control the beam dynamics and the emitted coherent synchrotron radiation (CSR). In this contribution, we present the results obtained with the Vlasov-Fokker-Planck solver Inovesa showing the impedance impact of different corrugated structures on the bunch and its emitted CSR power

    Dating again: Tips for starting over in midlife

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Dating for online beginners: Tips for staying safe

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Towards Direct Detection of the Shape of CSR Pulses with Fast THz Detectors

    Get PDF
    Coherent synchrotron radiation (CSR) is emitted when the emitting structure is equal to or smaller than the observed wavelength. Consequently, these pulses are very short and most detectors respond with their impulse response, regardless of the pulse length and shape. Here we present single-shot measurements performed at the Karlsruhe Research Accelerator (KARA) using a fast real-time oscilloscope and Schottky barrier detectors sensitive in the sub-THz range. The time response of this setup to CSR pulses emitted by electron bunches during the microbunching instability is shown to be sensitive to the shape of the electron bunch. Our results show how, in the future, the shape of electron bunches can be directly measured using a straightforward setup

    Simulations of the Micro-Bunching Instability for SOLEIL and KARA Using Two Different VFP Solver Codes

    Get PDF
    The longitudinal dynamics of a bunched electron beam is an important aspect in the study of existing and the development of new electron storage rings. The dynamics depend on different beam parameters as well as on the interaction of the beam with its surroundings. A well established method for calculating the resulting dynamics is to numerically solve the Vlasov-Fokker-Planck equation. Depending on the chosen parameters and the considered wakefields and impedances, different effects can be studied. One common application is the investigation of the longitudinal micro-wave and micro-bunching instabilities. The latter occurs for short electron bunches due to self-interaction with their own emitted coherent synchrotron radiation (CSR). In this contribution, two different VFP solvers are used to simulate the longitudinal dynamics with a focus on the micro-bunching instability at the Soleil synchrotron and the KIT storage ring KARA (Karlsruhe Research Accelerator)
    • …
    corecore